Simulation of Complex, Unsteady Flows Using a Grid-Free Vortex Method

A. Leonard
Graduate Aeronautical Laboratories
California Institute of Technology

M. Brady, L. Barba, M. Rubel

Essentials

- Numerical technique to solve the Navier-Stokes Equations
- Suitable for Direct Simulation and Large-Eddy Simulation
- Uses vorticity (curl of the velocity) as a variable
- Computational elements move with the fluid velocity

Advantages

- Computational elements only where vorticity is non-zero
- No grid in the flow field
- Only 2D grid on vehicle surface
- Boundary conditions in the far field automatically satisfied

Vortex Method as a Flow Model

Previous limitations (1960s and 70s)

- Inviscid model dynamics of the boundary layer ignored
- Computationally limited $O(N^2)$ operations per time step
- N =only a few hundred to a few thousand computational elements feasible
- Dynamics of the wake and force coefficients dependent on adjustable parameters

Recent Developments (90s)

- Viscous effects treated accurately
- Fast Vortex Algorithm $O(N \log N)$ operations per step
- N = one to 100 million computational elements feasible
- Dense system of computational elements solves fluid equations
 - Direct simulation for low Reynolds number
 - Large-Eddy simulation for high Reynolds number
- Large-scale, load-balanced parallel computing

Treatment of Surface Vorticity

Standard Panel Method for N Panels

- Computationally and storage limited $O(N^2)$ matrix elements computed and stored with $O(N^2)$ operations per time step
- Only N = 10,000 to 20,000 feasible

Advanced Panel Method

- Extendible to high order accuracy
- Computationally efficient -O(N) storage locations with $O(N \log N)$ operations per time step
- $N = 10^6$ no problem
- Triangular mesh with automatic refinement

Large-Eddy Simulation

Direct Simulation not Sufficient (1990s)

- Direct Simulation possible for Reynolds no.=10³ to 10⁴ (at parking speeds – 0.01 mph)
- $N=10^{12}$ elements (approx. 20 Terabytes) required for Reynolds no.=5 \times 10⁶ (at highway speeds)

Large-Eddy Simulation Required

- Treatment of small-scale (subgrid-scale) turbulence in the wake
- Treatment of small-scale turbulence in the boundary layers
- Treatment of fluidic actuators, blowing/suction, vortex generators and other flow control devices

Rounded Cube DNS

Features

- Adjustable leading edge curvature
- 0, 10 deg. yaw
- Reynolds no. 100
- Body forces

Vorticity Contours

0 deg.

10 deg.

Status / Future Work

- Incorporation of GTS model into full Vortex Method
- Implementation of the Vortex Method for arbitrary complex geometries
- Analysis of Reynolds number effects (leading edge curvature)
- Subgrid stress model for Large-Eddy Simulation